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Abstract

This paper describes two case studies in which require-
ments for new 
ight-software subsystems on NASA's
Space Shuttle were analyzed, one using standard for-
mal speci�cation techniques, the other using state ex-
ploration. These applications serve to illustrate three
main theses: (1) formal methods can complement con-
ventional requirements analysis processes e�ectively, (2)
formal methods confer bene�ts regardless of how exten-
sively they are adopted and applied, and (3) formal meth-
ods are most e�ective when they are judiciously tailored
to the application.

1 Introduction

Although Space Shuttle 
ight software is generally con-
sidered exemplary among NASA software development
projects, requirements analysis and quality assurance in
early lifecycle phases still use products and tools dating
from the late 1970s and early 1980s. As a result, these
analysis and assurance activities remain largely manual
exercises lacking well-de�ned methods or techniques. At
the same time, Shuttle 
ight software is life-critical and
increasingly complex. Software upgrades to accommo-
date new missions such as the recent MIR docking, new
capabilities such as Global Positioning System (GPS)
navigation, and improved algorithms such as the newly
automated three-engine-out contingency abort maneu-
vers (3E/O) and the recent optimization of Reaction
Control System Jet Selection (JS) are continually intro-
duced. Such upgrades underscore the need recognized
in the NASA community and in a recent assessment of
Shuttle 
ight software development, for \state-of-the-art
technology" and \leading-edge methodologies" to meet
the demands of software development for increasingly
large and complex systems [12, p. 91].
Over the last three years, NASA Langley Research

Center (LaRC) and its subcontractors, V��GYAN and
SRI, have investigated the use of formal methods (FM) in
aerospace applications, as part of a three-center demon-
stration project involving LaRC, the Jet Propulsion Lab-
oratory (JPL), and the Johnson Space Center (JSC). Lo-

ral Space Information Systems (formerly IBM, Houston)
participated as a subcontractor for JSC.
This paper focuses exclusively on LaRC project

activity1, which was performed in the context of a
broader program of formal methods work [1]. The ef-
fort consisted of formalizing selected Shuttle software
(sub)system modi�cations and analyzing key system
properties using either SRI's PVS speci�cation lan-
guage and interactive proof-checker [14], or Stanford's
Mur� (pronounced \Murphy") �nite-state veri�cation
system [4, 8]. The LaRC work had three main goals.
First, to explore and document the feasibility of formal-
izing critical Shuttle software requirements representing a
spectrum of maturity levels. Second, to develop reusable
formal methods strategies for representative classes of
Shuttle software. Third, to identify and assess key fac-
tors in the transfer of this technology to JSC and Loral.
The Shuttle subsystems selected for the LaRC projects

directly re
ect the �rst two goals. JS, 3E/O, and GPS
are all part of critical on-board 
ight software. The JS
requirements are mature and stable, the 3E/O require-
ments are somewhat newer, having only recently stabi-
lized after a series of iterations, and the GPS require-
ments are quite new and still in 
ux. JS and GPS be-
long to a class of Shuttle software that is readily formal-
ized using a functional model of computation, basically
a control function augmented with state variables, and
e�ectively veri�ed using standard theorem-proving tech-
niques. By contrast, 3E/O represents a class of mode-
sequencing software that can be quite naturally modeled
with �nite-state systems and e�ectively veri�ed using
state exploration. We have developed general strategies
for specifying and verifying these two classes of Shut-
tle software and have demonstrated their utility in the
JS [11, Appendix B], 3E/O [2], and GPS [3] projects.
The technical approach for JS is essentially the same as
that used for GPS, although the strategy was re�ned and
documented as part of the GPS study. Accordingly, we
present only GPS to illustrate the approach. Although

1Descriptions of some of the JPL, JSC, and Loral activities un-
dertaken for this project can be found in [5, 6, 9]. The overall
project is not large, roughly the equivalent of one full-time posi-
tion at each of the three NASA centers per year, including Loral,
V��GYAN, and SRI time.
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PVS and Mur� were used for this work, the strategies
are applicable to other systems with equivalent power
and functionality.
The key technical results of the project include a clear

demonstration of the utility of formal methods as a com-
plement to the conventional Shuttle requirements analy-
sis process. The JS, 3E/O, and GPS projects each uncov-
ered anomalies ranging from minor to substantive, most
of which were undetected by existing requirements anal-
ysis processes. A further result is a comparative demon-
stration of the di�erent roles formal methods can play,
underscoring the following two precepts: formal methods
confer bene�ts regardless of how extensively they are ap-
plied, and formal methods are most e�ective when they
are judiciously tailored to the application.

2 Formalization Strategies

In this section we discuss two general strategies and il-
lustrate their application to the GPS and 3E/O require-
ments, beginning with a sketch of Shuttle software devel-
opment and a brief description of PVS and Mur�.

2.1 Shuttle Software Background

NASA's prime contractor for the Space Shuttle is the
Space Systems Division of Rockwell International. Loral
Space Information Systems (formerly IBM Federal Sys-
tems, Houston) is their software subcontractor. Draper
Laboratory also serves Rockwell, providing requirements
expertise in guidance, navigation and control.
Much of the Shuttle software is organized into ma-

jor units called principal functions, each of which may
be subdivided into subfunctions. Since the late 1970s,
software requirements have been written using venera-
ble conventions known as Functional Subsystem Soft-
ware Requirements (FSSRs) | low-level software re-
quirements speci�cations written in English prose, pre-
sented with strong implementation biases, and accom-
panied by pseudo-code, and diagrams and 
owcharts in
arcane notations. Interfaces between software units are
speci�ed in input-output tables. Inputs can be variables
or one of three types of constant data: I-loads (�xed for
the current mission), K-loads (�xed for a series of mis-
sions), and physical constants (never changed).
Shuttle software modi�cations are packaged as Change

Requests (CRs), that are typically modest in scope, lo-
calized in function, and intended to satisfy speci�c needs
for upcoming missions. Roughly once a year, software
releases called Operational Increments (OIs) are issued
incorporating one or more CRs. Shuttle CRs are written
as modi�cations, replacements, or additions to existing
FSSRs.2 Loral Requirements Analysts (RAs) conduct

2The JS requirements are roughly 70 pages of tables and low-
level diagrams, 3E/O is roughly 70 pages of prose, pseudo-code,

owcharts, and tables, and the GPS subset undertaken here is ap-
proximately 110 pages of prose, pseudo-code, and tables.

thorough reviews of new CRs, analyzing them with re-
spect to correctness, implementability, and testability be-
fore turning them over to the development team. Their
objective is to identify and correct problems in the re-
quirements analysis phase, avoiding far more costly �xes
later in the lifecycle.

2.2 Summary of PVS and Mur�

PVS (Prototype Veri�cation System) is an environment
for speci�cation and veri�cation developed at SRI Inter-
national's Computer Science Laboratory [14]. The dis-
tinguishing characteristic of PVS is a highly expressive
speci�cation language coupled with a very e�ective in-
teractive theorem prover that uses decision procedures
to automate most of the low-level proof steps. Mur�
is a fully automatic state exploration tool developed by
David Dill and his students at Stanford University that
uses e�cient encodings, including symmetry-based tech-
niques, and e�ective hash-table strategies to do \reach-
ability analysis," i.e., to check that all reachable states
satisfy speci�ed properties [4, 8]. Mur� can explore mil-
lions of states in a matter of minutes.

2.3 Functional Speci�cation

As one of the larger ongoing Shuttle CRs, the GPS CR
provides a signi�cant upgrade to the Shuttle's navigation
capability. A portion of this CR has been formalized
using the functional speci�cation technique. After a brief
overview of GPS, we develop the abstract state machine
model used and describe the results of this application.

2.3.1 Overview of GPS

The GPS retro�t was planned in anticipation of the
DoD's phaseout of the TACAN navigation system. Shut-
tle vehicles will be out�tted with GPS receivers and ad-
ditional navigation software will be incorporated into the
Shuttle to process the position and velocity vectors gen-
erated by these receivers. Currently, the Shuttle naviga-
tion system can accept state vector updates derived from
ground-based radar observations. The Shuttle GPS soft-
ware CR will adapt this feature, providing the capability
to update the Shuttle navigation �lter states with se-
lected GPS state vector estimates similar to the way state
vector updates are currently accepted from the ground.
The GPS trial formalization focused on a few key areas

because the CR is very large and complex. After prelimi-
nary study of the CR and discussions with the GPS RAs,
we decided to concentrate on two new principal func-
tions, emphasizing their interfaces to existing navigation
software and excluding crew display functions. The two
principal functions, known as GPS Receiver State Pro-
cessing and GPS Reference State Processing, select and
modify GPS state vectors for consumption by the exist-
ing entry navigation software.
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2.3.2 Technical Approach

We have devised a strategy to model Shuttle princi-
pal functions based on the use of a conventional ab-
stract state machine model. Each principal function is
modeled as a state machine that takes inputs and local
state values, and produces outputs and new state val-
ues. This method provides a simple computational model
similar to popular state-based methods such as the A-7
model [7, 17].
One transition of the state machine model corresponds

to one scheduled execution of the principal function, e.g.,
one cycle at rate 6.25 Hz or other applicable rate. All of
the inputs to the principal function are bundled together
and a similar bundling of the outputs is arranged. The
state variable holds values that are (usually) not deliv-
ered to other units, but instead are held for use on the
next cycle.
The state machine transition function is a mathemat-

ically well-de�ned function that takes a vector of input
values and a vector of previous-state values, and maps
them into a vector of outputs and a vector of next-state
values.

M : I � S ! [O � S]

This function M is expressed in PVS and forms the cen-
tral part of the formal speci�cation. We construct a tuple
composed of the output and state values so only a single
top-level function is needed in the formalization. Some
values may appear in both the output list and the next-
state vector.
While the functionM captures the functionality of the

software subsystem in question, the state machine frame-
work can also serve to formalize abstract properties about
the behavior of the subsystem. The common approach
of writing assertions about traces or sequences of input
and output vectors is easily accommodated. For exam-
ple, we can introduce sequences I(n) = < i1; : : : ; in >

and O(n) = < o1; : : : ; on > to denote the 
ow of inputs
and outputs that would have occurred if the state ma-
chine were run for n transitions. A property about the
behavior of M can be expressed as a relation P between
I(n) and O(n) and formally established, i.e., we prove
that the property P does indeed follow from the formal
speci�cation M using the PVS proof-checker.
Figure 1 shows the abstract structure of a Shuttle prin-

cipal function rendered in PVS notation. Key features of
this structure are the two kinds of variable data (input
values, previous-state values) and three kinds of constant
data (I-loads, K-loads, constants) used as arguments, and
the result returned containing both output values (pro-
duced for other principal functions) and next-state values
(used by this principal function on the next cycle).
The PVS de�nition assumes all input and state values

have been collected into the structures pf inputs and
pf state. Additionally, all I-load, K-load, and constant
inputs used by the principal function are collected into
similar structures. The pf result type is a record that

pf_result: TYPE = [# output: pf_outputs,

state: pf_state #]

principal_function

(pf_inputs, pf_state,

pf_I_loads, pf_K_loads,

pf_constants) : pf_result =

(# output := <output expression>,

state := <next-state expression>

#)

Figure 1: PVS model of a Shuttle principal function.

contains an output component and a next-state compo-
nent. Each of these objects is, in turn, a structure con-
taining (possibly many) subcomponents.
The output and next-state expressions in the general

form above describe the e�ects of invoking the subfunc-
tions belonging to the principal function. In practice,
this can be very complicated so a stylized method of or-
ganizing this information has been devised, based on the
use of a LET expression to introduce variable names cor-
responding to the intermediate inputs and outputs ex-
changed among subfunctions.
In the CR, GPS Receiver State Processing is decom-

posed into six subfunctions, and GPS Reference State
Processing into four. In several cases the subfunction
requirements were su�ciently complex that it became
necessary to introduce intermediate PVS functions to de-
compose the formalization further. While this is a rea-
sonable strategy, it does cause some loss of traceability to
the original requirements. Clarity and readability were
judged more important, however, and such decomposi-
tions were introduced as needed. A consistent decompo-
sition scheme helped make the use of such intermediates
as transparent as possible.
The two GPS principal functions were formalized in

about 3300 lines of PVS speci�cations (including com-
ments and blank lines), packaged as eleven PVS theories.
Writing the original version and performing three revi-
sions to track requirements changes took an estimated
two sta� months of e�ort over a four-month period. This
period followed an earlier round of familiarization with
the CR.

2.3.3 GPS Results

Experience with the GPS e�ort showed that the outlook
for formal methods in requirements analysis is promising,
but it is still too early to declare victory. The GPS re-
quirements were still converging at the time of this study,
and a start during a later revision cycle would have made
the FM results more meaningful. Stable requirements
were not expected until late in 1995.
PVS can and has been used e�ectively to formalize this
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application; the custom speci�cation approach should be
easy to duplicate for other areas, yielding good prospects
for continuation of these e�orts. Although the speci�ca-
tion activity was assisted by tools, manual speci�cation
is also feasible here, albeit with reduced bene�ts.
Some Shuttle RAs are optimistic about the potential

impact of FM. Their feedback indicated our approach
was helpful in detecting three classes of errors normally
tracked by the Shuttle program:

1. Type 4 | requirements do not meet CR author's
intent.

2. Type 6 | requirements not technically clear, under-
standable and maintainable.

3. Type 9 | interfaces inconsistent.

An example of Type 4 errors encountered in the CR is
omission due to conditionally updating variables. Sup-
pose, for example, one branch of a conditional assigns
several variables, leaving them unassigned on the other
branch. The requirements author intends for the values
to be \don't cares" in the other branch, but occasionally
this is faulty because some variables such as 
ags need
to be assigned in both cases. Similar problems can occur
with overlapping conditions which cause ambiguity with
respect to correct variable assignments.
Examples of Type 9 errors, the most prevalent type

encountered, include numerous, minor cases of incom-
plete and inconsistent interfaces. Missing inputs and out-
puts from tables, mismatches across tables, inappropriate
types, and incorrect names are all typical errors seen in
the subfunction and principal function interfaces. Most
are problems that could be avoided through greater use
of automation in the requirements capture process.
It is worth noting that most errors detected in the

CR during the formalization were not exposed by type-
checking or other automated analysis activity, but were
found during the act of writing the speci�cations or dur-
ing the review and preparation leading up to the writing
step. Attempting to write a PVS construct and look-
ing around for the declared objects it needs e�ectively

ushed out many problems. On the other hand, there
were also cases where additional errors were found dur-
ing the typechecking phase. For example, interface prob-
lems (Type 9) usually surfaced during the act of speci-
�cation writing, while more serious problems stemming
from logic errors or inappropriate operations (Types 4
and 6) often persisted to the typechecking stage, where
type mismatches would reveal an error such as a missing
subscript.
A preliminary comparison with the conventional anal-

ysis process is revealing. By considering errors detected
in Reference State Processing during the �rst pass of the
FM-assisted analysis versus the subset of those errors also
found by the current process, a bit of anecdotal evidence
emerges for what can be missed by a manual review pro-
cess:

Issue Severity With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4

While most of these problems were of the minor Type 9
variety, a few were more serious. Since errors escaping
detection during this phase will be more costly to correct
during development or system test, our results suggest
that the added precision of formalization used early in
the lifecycle can yield tangible bene�ts.

Although many of these issues could have been found
with lighter-weight techniques, the use of formal speci-
�cations can detect errors and leave open the option of
deductive analysis later on. When we reach the point of
modeling higher level properties and carrying out proofs,
we expect to see fewer errors. Lightweight forms of anal-
ysis applied early detect more problems and detect them
quickly, but the errors tend to be super�cial. As more
powerful analysis methods are introduced, we expect to
�nd fewer, but more subtle problems.

The next step in the application of FM to GPS, which
had been deferred as of this writing, is to identify and for-
malize important behavioral properties of the processing
of GPS position and velocity vectors. Proving these prop-
erties hold will o�er a powerful means of further shak-
ing out the requirements before (and even after) passing
them on to development.

2.4 Mode-Sequencing Speci�cation

The primary purpose of the 3E/O CR is to automate
and upgrade the 3E/O contingency guidance function.
Following a brief overview of 3E/O, we describe the �nite-
state machine model used to specify the mode-sequencing
component of 3E/O and summarize the results of the
analysis.

2.4.1 Overview of 3E/O

3E/O is responsible for monitoring ascent parameters
and, if three Shuttle main engines fail sequentially or
simultaneously, calculating and commanding the appro-
priate abort maneuver if an abort is necessary. In certain
situations, 3E/O is also responsible for automatic contin-
gency maneuvers resulting from the failure of two Shut-
tle main engines (2E/O). 3E/O is executed repeatedly at
speci�ed intervals that range from 1.92 seconds to 0.16
seconds; each execution is part of a guidance cycle that
remains active during powered 
ight until either a con-
tingency abort is required or progress along the powered

ight trajectory is su�cient to preclude an abort even if
three main engines fail.

3E/O consists of two main functions: a region-
select function that selects a contingency-maneuver mode
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based on the values of ascent parameters, and a contin-
gency guidance function that is used strictly for display
if the ascent is normal, but is responsible for calculating
and commanding initial abort maneuvers determined by
the selected region if a contingency arises. The maneu-
vers calculated and commanded by the two 3E/O func-
tions may di�er from one guidance cycle to the next in
response to changes in the external environment or in the
Shuttle's internal state.

2.4.2 Technical Approach

3E/O is typical of most fault-handling logic in the follow-
ing respects: it consists largely of mode switching and
exception handling, it exhibits virtually no algorithmic
complexity, and its input and state spaces lack a reg-
ular and easily characterizable structure. Due largely
to these three characteristics, conventional speci�cation
and veri�cation strategies that use type checking and
theorem proving to establish correctness of functional
requirements are not e�ective validation methods for
fault-handling applications. The simplest way to vali-
date fault-handling systems is to enumerate the entire
input and state spaces by brute force. While this is rarely
practical|the state space of most applications of inter-
est is far too great to permit exhaustive enumeration|it
is often possible to \downscale" the state space of an
application to a reasonably small, �nite size, while re-
taining essential behaviors of the original system. The
downscaled or aggressively abstracted system can then be
analyzed e�ectively using state exploration, as we have
done with 3E/O. In broad terms, the technical approach
used for 3E/O has been to develop an abstract model
that would enable us to encode the basic sequencing con-
straints as transitions in a �nite-state machine and to
specify key properties of the 3E/O sequencing algorithm
as invariants that must hold in all reachable states. We
elaborate key elements of this approach below.
The challenge in modeling Shuttle 
ight software typ-

ically derives from the number of input variables3 and
their inherent complexity. The strategy we developed
de�nes a state transition system operating within a two-
level context: a global environment consisting of vari-
ables representing sampled sensor values for external
physical parameters (e.g., current dynamic pressure),
and a local environment consisting of variables represent-
ing the Shuttle's internal status.4 To provide a reason-
ably tractable and accurate model of the input space, we
make the following simplifying assumptions.

1. The largely continuous values representing the Shut-
tle's physical environment can be modeled using ei-
ther qualitative ranges or booleans. For example,

3The 3E/O requirements document contains six full, double-
spaced pages of inputs, most of which represent I-loaded thresholds
used to calculate the order and timing of the maneuver sequences.

4This strategy is reminiscent of the standard A-7 approach [7,
17], but di�ers in the way the environment is modeled.

to verify a particular sequence that (partially) de-
termines assignment of abort maneuver regions, it
is su�cient to check whether the current altitude
and altitude rate predict an apogee altitude greater
or less than the calculated altitude-velocity curve.
Since the exact values or physical laws involved are
irrelevant for verifying the crucial sequencing prop-
erties, a simple boolean-valued check su�ces. Simi-
larly, to verify another sequence that also (partially)
determines assignment of abort maneuver regions, it
is necessary to check that the inertial velocity falls
within certain I-loaded thresholds. Since the exact
inertial velocity is not a factor (in this case or any
other), there is no need to represent a continuous
range of values; the sequencing property can be es-
tablished with respect to a qualitative range that
re
ects the set of possibilities de�ned by the �xed
thresholds.

2. Constraints on the simultaneous values assumed by
variables representing physical parameters can be ig-
nored. For example, we make no attempt to capture
the relation between velocity and altitude. Although
this is clearly naive, it is also overly general; while
we may consider too many cases, we do not overlook
any.5

3. The implicit notion of time inherent in an ordered
sequence of events is su�cient. No further or more
explicit representation of time is necessary for ana-
lyzing 3E/O sequencing properties.

We further reduce the large number of inputs by ex-
ploiting the fact that a boolean-valued operation on two
inputs is equivalent, as a sequencing constraint, to a
simple boolean variable. For example, in 3E/O, the
boolean expression used to determine if the Shuttle has
su�cient range for a particular type of abort maneu-
ver checks two conditions: is the down-range horizon-
tal earth-relative velocity strictly less than 0, and is the
di�erence between the predicted and actual range ca-
pability strictly greater than an I-loaded minimum ac-
ceptable range di�erence, i.e., v horiz dnrng < 0 AND

delta r > del r usp. The value of the operation in
each conjunct is either true or false, and indistinguishable
from a single boolean-valued variable; as a sequencing
constraint, this conjunction is equivalent to the expres-
sion: v horiz dnrng LT 0 AND delta r GTR del r usp,
where each conjunct is reduced to a simple boolean vari-
able. By universally quantifying over these variables, we
e�ectively show that for all possible values of the two
(original) expressions, certain properties hold. We use
this strategy for all inputs that represent the Shuttle's
physical environment.

5In the context of �nite-state veri�cation, a technique which
prides itself on being able to handle very large (but �nite) state
spaces, it is far better to consider too many possibilities, than too
few.
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Ruleset <external physical parameter 1>: TYPE

Do
...

Ruleset <external physical parameter n>: TYPE

Do

Rule "<rulename>"

...

Rule "<rulename>"

Endruleset;

...

Endruleset;

Figure 2: Mur� Abstract Syntax Used to Model Shuttle's
Physical Environment.

Figure 2 shows a template for the Mur� rules used to
generate input values for external physical parameters.
The Ruleset construct is syntactic sugar that generates
a copy of the rules within its scope for every value of
the bound variable. Inputs that represent the Shuttle's
internal state, e.g., the 
ag that indicates whether con-
tingency 3E/O has been activated or the variable that
encodes whether main engine cuto� has occurred, are
modeled as independent inputs using simple nondeter-
ministic rules that generate all possible (combinations
of) values in the input space.
Finally, we model basic mode sequencing properties as

state transition constraints and then show that if these
constraints are satis�ed, key properties of the algorithms
also hold. The key properties are speci�ed as invariants,
i.e., expressions that must be true in all reachable states.
For example, we use an invariant to check that all outputs
persisting from the previous cycle remain correct with
respect to conditions in the current cycle.
Employing the general strategy outlined here, the two

main 3E/O functions were speci�ed in approximately
1200 lines of Mur� code including comments, using ap-
proximately a dozen invariants.

2.4.3 3E/O Results

Our experience has been that the process of formalizing
and analyzing requirements invariably exposes undocu-
mented assumptions, inconsistent and imprecise termi-
nology, redundant calculations, missing initialization, in-
terface anomalies, and logical errors. Of the issues tabu-
lated below and reported to the 3E/O RA, roughly one-
third will appear in an upcoming Documentation (Er-

rata) CR. Interestingly, many of the issues we found most
compelling were not of interest to the RA. For example,
we discovered a sub-optimal sequence in which an entry
maneuver is potentially calculated twice because a test is
executed after rather than before the calculation. How-
ever, since the Shuttle currently uses only around 50% of
the available compute cycles, the anomaly was not con-
sidered important. The logical error listed below repre-
sents a signi�cant error in the requirements that was also
discovered by the existing requirements analysis process.
To our knowledge, the other issues listed below had not
been previously discovered.

Error Type Number
undocumented assumption 3
inconsistent or anomalous terminology 10
redundant calculation 2
missing initialization 1
interface anomaly 2
logical error 1

3 Issues and Conclusions

In these concluding remarks, we touch on the issue of
technology transfer and return to an earlier theme: the
versatility of formal methods, using the 3E/O, JS, and
GPS studies to illustrate the various roles and concomi-
tant bene�ts available through the judicious application
of formal techniques.

3.1 Technology Transfer

One aspect of technology transfer, demonstrating feasi-
bility on important applications, has been addressed by
the results of the case studies. Other issues pertain to
the eventual uptake of formal methods by the aerospace
industry. Working directly with industry on these studies
has been helpful for all sides and has led to the following
observations.

� Perceived bene�ts: Shuttle RAs are generally in-
clined to believe in the bene�ts of formalism and
need only modest demonstrations such as GPS and
3E/O to convince them. RAs have long felt they
lack adequately precise, mechanizable ways to ex-
press and analyze complex requirements.

� Cost e�ectiveness: Our case studies, largely carried
out by experienced practitioners, showed that lim-
ited, tailored use of FM appears to be cost e�ective.
Large projects, however, have a real and understand-
able need for quanti�able cost predictions. This re-
mains an unmet need and could be an obstacle to
convincing managers to adopt FM. The cost e�ec-
tiveness of FM in the hands of novice users is still
an open question.

6



� Reading speci�cations: PVS provides a formal spec-
i�cation language of considerable power while still
preserving the syntactic 
avor of modern program-
ming languages. As a result, PVS speci�cations are
quite readable by those with little prior exposure
to PVS. The GPS RAs were able to read and un-
derstand the PVS speci�cations without becoming
PVS practitioners, corroborating a similar experi-
ence in the AAMP5 project jointly undertaken by
SRI and Collins Commercial Avionics [10], where
the Collins engineers quickly became adept at read-
ing PVS speci�cations of the AAMP5.

� Writing speci�cations: RAs have had less practice
writing formal speci�cations, and still feel uncom-
fortable with it. Developing the skill set and expe-
rience necessary to write formal speci�cations will
require more attention in a second round of technol-
ogy transfer. Nevertheless, we are highly encouraged
by our experience at a recent training course o�ered
by NASA LaRC, where the participants (Loral RAs
and JSC personnel) all speci�ed and proved several
problems drawn from aerospace applications.

� Veri�cation: Not enough formal veri�cation was
performed by RAs in the case studies to draw valid
conclusions. We anticipate a signi�cant learning
curve in this area, although the training course cited
above was encouraging.

Overall, the outlook for industrial adoption of the type
of formal methods we explored is promising. Contin-
ued insertion projects are needed to develop in-house ex-
pertise in selected companies. The best strategy is to
team experienced practitioners with motivated applica-
tion area experts and to tackle a feasible portion of a real
application.

3.2 Formal Methods: Roles and Bene�ts

The role of formal methods on a project can vary along
several dimensions. We consider �rst the variation con-
ferred by the di�erent levels of formal methods analysis
available within a single technique or tool, the �rst level
being speci�cation only. Although a speci�cation that
has not been validated through proof can be aptly com-
pared to a program that has not been debugged, there
are nevertheless real bene�ts to be gained from model-
ing and formally specifying requirements, including the
following.

� Clarify Requirements: A formal speci�cation pro-
vides a concise and unambiguous statement of the
underlying requirements, thereby exposing funda-
mental issues that tend to be obscured by lengthy
informal statements. Our experience with JS illus-
trates this point nicely. Decoding the JS require-
ments documents required the combined e�orts of

the multi-center team over several months and re-
lied extensively on resident expertise at Loral. How-
ever, when LaRC formalized the high-level JS re-
quirements in approximately 500 lines of PVS, it
became clear that the JS function is basically very
simple and, with the help of the formal speci�cation,
could probably be communicated in less than a day
to those with no prior JS exposure.

� Articulate Implicit Assumptions: Formalisms can
help identify and supplement limitations in require-
ments methodology. The concept of state variables,
for example, is not explicitly mentioned in FSSR-
style requirements. Their existence must be in-
ferred from context by noting when local variables
appear to be persistent. Explicitly modeling these
state variables has made the augmented GPS re-
quirements clearer and more precise. Similarly, us-
ing Mur� to explore the cyclic behavior of 3E/O ex-
posed undocumented assumptions about the input
space well before we introduced invariants.

� Expose Flaws: Although the GPS project has not
yet undertaken any proofs, it has exposed a signi�-
cant number of 
aws in the requirements, especially
among the subsystem interfaces. Applications like
GPS that involve large, complex systems and imma-
ture requirements, can expect to realize substantial
bene�t from formal speci�cation alone. Similarly,
state exploration of the 3E/O speci�cation revealed
several potential issues even before introducing in-
variants.

Given a tool like PVS that o�ers a highly expres-
sive language and strong typechecking that is inherently
undecidable, the distinction between speci�cation only
and speci�cation with proof of simple properties is some-
what blurred because speci�cations can not be considered
type-correct until all type-correctness obligations have
been discharged in the prover. Nevertheless, challenging
a speci�cation by proving properties with a proof-checker
and checking invariants through state exploration repre-
sent a di�erent level of activity that provides far greater
assurances than speci�cation alone, as noted in [16]. At
this level, the bene�ts include:

� Con�rm/Discon�rm Key Properties: System prop-
erties or constraints can be precisely stated and de-
ductively veri�ed. The JS speci�cation was vali-
dated by proving a dozen lemmas derived from a
list of expected JS properties. The property that JS
shall never choose a failed jet proved to be false (i.e.,
the corresponding lemma was unprovable), exposing
a genuine problem in mature requirements.

� Debug Speci�cations: Less signi�cant properties
that ought to be true about a speci�cation can be
stated as challenges and proved. When such a proof
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fails, it can be due to a real problem in the require-
ments or merely to a mistake in expressing the spec-
i�cations.

A second source of versatility derives from the variety
of formal methods techniques. As suggested in the GPS,
JS, and 3E/O studies, there are many ways to model sys-
tems and calculate their properties, each of which confers
di�erent bene�ts.

� Finite-State Veri�cation: These techniques, includ-
ing state exploration and model checking, are good
for speci�cation debugging; counter example gener-
ation; automatic, rapid, and reliable exploration of
variations; and exhaustive enumeration. Conversely,
�nite-state veri�cation often demands more concrete
speci�cations, which are typically poor vehicles for
communicating and documenting systems and their
properties, as we found in the case of 3E/O.

� Proof Checking: Deductive techniques support more
varied and more abstract models, more expres-
sive speci�cation, more varied properties, and more
reusable veri�cations. Conversely, theorem proving
techniques are typically less automatic and invari-
ably require more e�ort on the part of the analyst.

Furthermore, although JS, GPS, and 3E/O have each
used a single formal methods technique, a further vari-
ation o�ering potentially greater productivity involves
applying a combination of methods to a given problem
by integrating model-checking, proof-checking, and tech-
niques such as simulation.6

A formal speci�cation, particularly one that has been
veri�ed, is best viewed as a point of departure, providing
an e�ective basis for documenting, calculating, and pre-
dicting current system behavior and for analyzing future
modi�cations and extensions. Reuse of formal methods
products and strategies provides the best return on in-
vestment in formal speci�cation and analysis. The most
lasting contribution of the work described here has been
the development of two reusable strategies and a clear
demonstration of the tradeo�s o�ered by the versatility
of formal methods techniques.
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